Source code for conkit.misc.bandwidth

# BSD 3-Clause License
#
# Copyright (c) 2016-18, University of Liverpool
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
#   list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
#   this list of conditions and the following disclaimer in the documentation
#   and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

"""A collection of bandwidth estimators for Kernel Density Estimation"""

from __future__ import division
from __future__ import print_function

__author__ = "Felix Simkovic"
__date__ = "31 Mar 2018"
__version__ = "1.0.1"

import abc
import numpy as np

ABC = abc.ABCMeta('ABC', (object,), {})

SQRT_PI = np.sqrt(np.pi)
SQRT_2PI = np.sqrt(2. * np.pi)


[docs]class BandwidthBase(ABC): """Abstract class for bandwidth calculations""" @abc.abstractproperty def bandwidth(self): return 0.0 @property def bw(self): return self.bandwidth
[docs]class AmiseBW(BandwidthBase): """Asymptotic Mean Integrated Squared Error (AMISE) This particular choice of bandwidth recovers all the important features whilst maintaining smoothness. It is a direct implementation of the method used by [#]_. .. [#] Sadowski, M.I. (2013). Prediction of protein domain boundaries from inverse covariances. """ def __init__(self, data, niterations=25, eps=1e-3): """Instantiate a new bandwith calculator""" self._data = np.asarray(data) self._niterations = niterations self._eps = eps @property def bandwidth(self): data = self._data x0 = BowmanBW(data).bandwidth y0 = AmiseBW.optimal_bandwidth(data, x0) x = 0.8 * x0 y = AmiseBW.optimal_bandwidth(data, x) for _ in np.arange(self._niterations): x -= y * (x0 - x) / (y0 - y) y = AmiseBW.optimal_bandwidth(data, x) if abs(y) < (self._eps * y0): break return x
[docs] @staticmethod def curvature(data, x, w): """ See Also -------- gauss_curvature """ import warnings warnings.warn("This function will be removed in a future release! Use gauss_curvature() instead") return AmiseBW.gauss_curvature(data, x, w)
[docs] @staticmethod def gauss_curvature(data, x, w): M, N = data.shape z = ((x - data) / w)**2 return (N * (z - 1.0) * (np.exp(-0.5 * z) / (w * SQRT_2PI)) / w**2).sum() / M
[docs] @staticmethod def extended_range(min_, max_, bandwidth, ext=3): d = bandwidth * ext return min_ - d, max_ + d
[docs] @staticmethod def optimal_bandwidth(data, bandwidth): M, N = data.shape alpha = 1. / (2. * SQRT_PI) sigma = 1.0 integral = AmiseBW.stiffness_integral(data, bandwidth) return bandwidth - ((M * integral * sigma ** 4) / alpha) ** (-1.0 / (N + 4))
[docs] @staticmethod def stiffness_integral(data, bandwidth, eps=1e-4): min_, max_ = AmiseBW.extended_range(data.min(), data.max(), bandwidth, ext=3) dx = 1.0 * (max_ - min_) maxn = dx / np.sqrt(eps) if maxn > 2048: maxn = 2048 yy = 0.5 * dx * ( AmiseBW.gauss_curvature(data, min_, bandwidth)**2 + AmiseBW.gauss_curvature(data, max_, bandwidth)**2 ) n = 2 while n <= maxn: dx /= 2. y = 0 for i in np.arange(1, n, 2): y += AmiseBW.gauss_curvature(data, min_ + i * dx, bandwidth) ** 2 yy = 0.5 * yy + y * dx if n > 8 and abs(y * dx - 0.5 * yy) < eps * yy: break n *= 2 return yy
[docs]class BowmanBW(BandwidthBase): """Bowman & Azzalini [#]_ bandwidth calculation .. math:: \\sqrt{\\frac{\\sum{X}^2}{n}-(\\frac{\\sum{X}}{n})^2}*(\\frac{(d+2)*n}{4})^\\frac{-1}{d+4} .. [#] Bowman, A.W. & Azzalini, A. (1997). Applied Smoothing Techniques for Data Analysis. """ def __init__(self, data): """Instantiate a new bandwith calculator""" self._data = np.asarray(data) @property def bandwidth(self): data = self._data M, N = data.shape return np.sqrt((data ** 2).sum() / M - (data.sum() / M) ** 2) * ((((N + 2) * M) / 4.) ** (-1. / (N + 4)))
[docs]class LinearBW(BandwidthBase): """Linear [#]_ implementation .. math:: \\frac{N_{max}}{t} .. [#] Sadowski, M.I. (2013). Prediction of protein domain boundaries from inverse covariances. """ def __init__(self, data, threshold=15): self._data = np.asarray(data) self._threshold = threshold @property def bandwidth(self): return float(self._data.max() / self._threshold)
[docs]class ScottBW(BandwidthBase): """Scott's [#]_ implementation .. math:: 1.059*\\sigma*n^\\frac{-1}{d+4} .. [#] Scott, D.W. (1992). Multivariate Density Estimation: Theory, Practice, and Visualization. """ def __init__(self, data): """Instantiate a new bandwith calculator""" self._data = np.asarray(data) @property def bandwidth(self): data = self._data M, N = data.shape sigma = np.minimum(np.std(data, axis=0, ddof=1), (np.percentile(data, 75) - np.percentile(data, 25)) / 1.349)[0] return 1.059 * sigma * M ** (-1. / (N + 4))
[docs]class SilvermanBW(BandwidthBase): """Silverman's [#]_ implementation .. math:: 0.9*\\sigma*(n*\\frac{d+2}{4})^\\frac{-1}{d+4} .. [#] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. """ def __init__(self, data): """Instantiate a new bandwith calculator""" self._data = np.asarray(data) @property def bandwidth(self): data = self._data M, N = data.shape sigma = np.minimum(np.std(data, axis=0, ddof=1), (np.percentile(data, 75) - np.percentile(data, 25)) / 1.349)[0] return 0.9 * sigma * (M * (N + 2) / 4.) ** (-1. / (N + 4))
[docs]def bandwidth_factory(method): """Obtain the bandwidth as defined by user method""" if method == "amise": return AmiseBW elif method == "bowman": return BowmanBW elif method == "linear": return LinearBW elif method == "scott": return ScottBW elif method == "silverman": return SilvermanBW else: msg = "Undefined bandwidth method: {0}".format(method) raise ValueError(msg)